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Abstract

In the present paper, the Mindlin plate theory is used to study buckling of in-plane loaded isotropic rectangular plates

with different boundary conditions. The novelty of the paper is that the analytical closed-form solution is developed

without any use of approximation for a combination of six different boundary conditions; specifically, two opposite edges

are simply supported and any of the other two edges can be simply supported, clamped or free. Monoaxial in-plane

compressive loads on both directions are considered, as well as equal biaxial loads. The present analytical solution can be

obtained with any required accuracy and can be used as benchmark. Dimensionless critical buckling loads and mode

shapes are given for the six cases analyzed. The effect of boundary conditions, loading conditions, variations of aspect

ratios and thickness ratios are examined and discussed in detail. Finally, based on comparison with previously published

results, the accuracy of the results is shown.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Thick plates are important structural elements and are widely used in engineering applications. They can be
analyzed by using the classical Kirchhoff thin plate theory, but, because the effects of transverse shear
deformation are neglected, the deflections are underestimated and the natural frequencies and buckling loads
are overestimated.

In order to deal with thicker and laminated composite plates, the Mindlin theory of plates (first-order shear
deformation theory) was introduced to take into account transverse shear strains. Five variables are used in
this theory to describe the deformation: three displacements of the middle surface and two rotations. In case of
flat plates (without geometric imperfections), the in-plane displacements are uncoupled from the transverse
displacement and rotations.

The Mindlin approach [1] does not satisfy the transverse shear boundary conditions at the top and bottom
surfaces of the plate, since a constant shear angle through the thickness is assumed, and plane sections remain
plane after deformation. As a consequence of this approximation, the Mindlin theory of plates requires shear
correction factors for equilibrium considerations. For this reason, Reddy [1,2] has developed a nonlinear plate
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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theory that includes cubic terms (in the distance from the middle surface of the plate) in the in-plane
displacement kinematics. This higher-order shear deformation theory satisfies zero transverse shear stresses at
the top and bottom surfaces of the plate; up to cubic terms are retained, giving a parabolic shear strain
distribution through the thickness, resembling with good approximation the results of three-dimensional
elasticity; therefore, shear correction factors are not required.

A synthetic literature review is presented here. Extensive analyses for elastic stability of rectangular plates of
both constant and variable thickness on the basis of the classical Kirchhoff plate theory have been carried out
by using exact and numerical methods, and a considerable amount of information on the buckling loads for
different boundary conditions and in-plane loadings is available in the literature (e.g., see Refs. [3–5]). On the
other hand, the literature on elastic buckling of moderately thick plates based on Mindlin and third-order
shear deformation theories, is not so extensive (e.g., see Ref. [6]). Srinivas [7] presented an exact three-
dimensional elastic analysis for the stability of thick simply supported rectangular plates. Brunelle [8] analyzed
the elastic buckling of transversely isotropic Mindlin plates with two parallel edges simply supported and the
remaining two edges subjected to a variety of boundary conditions. Brunelle and Robertson [9] derived the
governing equations of a transversely isotropic, initially stressed Mindlin plate, and solved the thick plate
equations for simply supported rectangular plates in a state of uniform compressive stress plus a uniform
bending stress both acting in the same direction. Rao et al. [10] analyzed the stability of moderately thick
rectangular plates by using a triangular finite element. Luo [11] presented the finite element analysis for the
buckling of thin and moderately thick plates by means of a modified complementary energy principle, and
showed the simplicity and reliability of the method. Sakiyama and Matsuda [12] analyzed the elastic buckling
of rectangular Mindlin plates with mixed boundary conditions using integral equations combined with a
numerical integration technique.

Wang [13] obtained a relationship between the elastic buckling loads of classical Kirchhoff plates and
Mindlin plates. Wang and Reddy [14] presented an analogous relationship between the elastic buckling loads
of Kirchhoff and third-order shear deformation polygonal plates with simply supported edges.

Leissa and Kang using the classical power series method to get the exact solutions for free vibration and
buckling of S-C-S-C [15] and S-F-S-F [16] (SS, simply supported edge; C, clamped edge; F, free edge) thin
plates loaded at the simply supported edges by linearly varying in-plane distributed forces and moments. Kang
and Leissa [17] extended their analysis to buckling of rectangular thin plates having two opposite edges simply
supported and subjected to linearly varying in-plane load. Reddy and Phan [18] obtained exact buckling loads
and natural frequencies of simply supported rectangular plates by using a higher-order shear deformation
theory.

Liew et al. [19] calculated the buckling loads of rectangular Mindlin plates having two parallel edges simply
supported, one edge free and the remaining edge with free, simply supported or clamped boundary condition.
Wang et al. [20] presented general buckling solutions for in-plane loaded, isotropic Mindlin plates of
rectangular, polygonal, elliptical, semicircular and annular shape. Liew et al. [21], by using the differential
quadrature method, studied buckling behavior of rectangular plates resting on Winkler foundation based an
approximate analysis and the Mindlin plate theory. Shen studied the postbuckling of rectangular Mindlin
plates with four simply supported edges [22], and four free edges [23], subjected to biaxial compression
combined with lateral pressure and resting on a two-parameter (Pasternak-type) elastic foundation. In his
work, the initial geometrical imperfection of the plate was also taken into account. Mizusawa [24] applied the
spline strip method to compute the buckling load parameters of rectangular thick, uniform and tapered, plates
under uniform in-plane loads with a few different boundary conditions. The canonical exact solutions for
elastic bending, buckling and free vibration of plates resting on two-parameter foundations were obtained by
Lam et al. [25] by using Green’s functions. Penga et al. [26] presented a mesh-free Galerkin method for free
vibration and stability analysis of stiffened Mindlin plates.

The first analytical solutions for buckling and free vibration of stepped rectangular Mindlin plates with two
opposite edges simply supported and the remaining two edges being free, simply supported or clamped was
obtained by Xiang and Wei [27].

The Rayleight–Ritz method and the finite strip method were used by Dawe and Roupaeil [28] to study
elastic buckling of rectangular Mindlin plates. Xiang [29] studied buckling and free vibrations of Mindlin
plates by using the Rayleigh–Ritz method; the same approach was used by Kitipornchai et al. [30] to analyze
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skew plates; skew plates on Pasternak foundation were investigated by Xiang et al. [31,32]. Wang et al. [33]
considered the elastic buckling of rectangular Mindlin plates with internal line supports.

Liew and Chen [34] considered elastic buckling of rectangular Mindlin plates subjected to partially
distributed in-plane loads by using the radial point interpolation method. Shufrin and Eisenberger [35]
analyzed the stability and vibration of the shear deformable first-order (Mindlin) and higher-order (Reddy)
plates by using the extended Kantorovich method. Liu [36] investigated buckling of discontinuous (cracked)
rectangular Mindlin plates.

In the present paper, the Mindlin plate theory is used to study buckling of in-plane loaded isotropic
rectangular plates with different boundary conditions. The novelty of the paper is that the analytical closed-
form solution is developed without any use of approximation for a combination of six different boundary
conditions; specifically, two opposite edges are simply supported and any of the other two edges can be simply
supported, clamped or free. Monoaxial in-plane compressive loads on both directions are considered, as well
as equal biaxial loads. The present solution is an extension of the free vibration analysis developed by
Hosseini-Hashemi and Arsanjani [38] for unloaded, rectangular Mindlin plates. The present analytical
solution can be obtained with any required accuracy and can be used as a benchmark.
2. Governing equations and their dimensionless forms

Consider a flat, isotropic, rectangular Mindlin plate of uniform thickness h, length a, width b, modulus of
elasticity E, Poisson’s ratio n, shear modulus G ¼ E/2(1+n) and mass per unit volume r, oriented so that its
mid-plane surface contains the x1 and x2-axis of a Cartesian coordinate system (x1,x2,x3). The plate is
subjected to in-plane edge loads per unit length N1 in the x1 direction and N2 in the x2 direction, as shown in
Fig. 1. The two edges of the plate parallel to the x2-axis are assumed to be simply supported while the other
two edges may have any combinations of clamped, free or simply supported boundary conditions as shown in
Fig. 2.

It is not difficult to show that the resultant force due to components of the in-plane edge loads in transverse
direction for a deflected plate is

p1 ¼ N1c3;11 þN2c3;22, (1)

where c3 is the plate transverse deflection and p1 is the force per unit area positive in x3 direction. In Eq. (1)
and in the following part of the present paper, the symbol ‘‘,’’ is used to indicate derivative; e.g. c3,11 is
equivalent to q2c3/q

2x1 while c3,1 is simply qc3/qx1.
The governing differential equations based on the Mindlin first-order shear deformation plate theory in

absence of in-plane stress resultants are given by [38]

M11;1 þM12;2 �Q1 ¼ �
1

12
rh3 €c1, (2a)
Fig. 1. A rectangular Mindlin plate subjected to in-plane edge loads.
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Fig. 2. Boundary conditions of the Mindlin plates analyzed.
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M12;1 þM22;2 �Q2 ¼ �
1

12
rh3 €c2, (2b)

Q1;1 þQ2;2 þ p ¼ rh €c3, (2c)

where c1 and c2 are the rotations of the transverses normal about the x2- and x1-axis, respectively, M11 and
M22 are the bending moments, M12 is the twisting moment, and Q1 and Q2 are the transverse shear forces. The
stress resultants are

M11 ¼ �Dðc1;1 þ nc2;2Þ; M22 ¼ �Dðc2;2 þ nc1;1Þ, (3a,b)

M12 ¼ �
D

2
ð1� nÞðc1;2 þ c2;1Þ, (3c)

Q1 ¼ �k
2Ghðc1 � c3;1Þ; Q2 ¼ �k

2Ghðc2 � c3;2Þ, (3d,e)

where D ¼ Eh3/(12(1�n2)) is the flexural rigidity and k2 is the shear correction factor since the transverse shear
strains are not truly independent of the thickness coordinate but nearly parabolic.

In order to derive the governing differential equations for the plate under consideration, the transverse force
p in Eq. (2c) may be interpreted as

p ¼ p2 þ p1 ¼ N1c3;11 þN2c3;22 þ p2, (4)

where p2 is any applied transverse distributed load or point loads opposing the x3-direction. In absence of the
applied load p2 and assuming free harmonic motion, the governing differential equations for free vibration of
the plate under investigation may be presented in terms of c1, c2 and c3 by substituting the stress resultants
from expressions (3a–e) and Eq. (4) into Eqs. (2a–c). Thus we obtain

D½n1ðc1;11 þ c1;22Þ þ n2ðc1;11 þ c2;12Þ � k2Ghðc1 � c3;1Þ� ¼ �
1

12
rh3o2c1, (5a)

D½n1ðc2;11 þ c2;22Þ þ n2ðc1;12 þ c2;22Þ � k2Ghðc2 � c3;2Þ� ¼ �
1

12
rh3o2c2, (5b)

k2Ghðc3;11 þ c3;22 � c1;1 � c2;2Þ þN1c3;11 þN2c3;22 ¼ �rho2c3, (5c)

where o is the free vibration frequency of the plate

c1ðx1;x2; tÞ ¼ c1ðx1;x2Þ e
�iot; c2ðx1;x2; tÞ ¼ c2ðx1;x2Þ e

�iot, (6a,b)
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c3ðx1;x2; tÞ ¼ c3ðx1; x2Þ e
�iot; n1 ¼

1� n
2

; n2 ¼
1þ n
2

. (6c2e)

For generality and convenience, the coordinates are normalized with respect to the plate planar dimensions
and the following nondimensional terms are introduced:

X 1 ¼
x1

a
; X 2 ¼

x2

a
; d ¼

h

a
; Z ¼

a

b
; ð ~c1;

~c2Þ ¼ ðc1;c2Þ;
~c3 ¼

c3

a
,

ð ~M11; ~M22; ~M12Þ ¼ ðM11;M22;M12Þ
a

D
; ð ~Q1; ~Q2Þ ¼

ðQ1;Q2Þ

k2Gh
,

ð ~N1; ~N2Þ ¼ ðN1;N2Þ
a2

D
; b ¼ oa2

ffiffiffiffiffiffi
rh

D

r
; y ¼ 12

k2n1
d2

, (7)

where b is the frequency parameter. Introducing dimensionless terms, also enables Eqs. (5a–c) to be written in
dimensionless form as

~c1;11 þ Z2 ~c1;22 þ
n2
n1
ð ~c1;11 þ Z ~c2;12Þ �

y
n1
ð ~c1 �

~c3;1Þ ¼ �
k2

y
b2 ~c1, (8a)

~c2;11 þ Z2 ~c2;22 þ
n2
n1

Zð ~c1;12 þ Z ~c2;22Þ �
y
n1
ð ~c2 � Z ~c3;2Þ ¼ �

k2

y
b2 ~c2, (8b)

ðyþ ~N1Þ
~c3;11 þ ðyþ ~N2ÞZ2 ~c3;22 � yð ~c1;1 þ

~c2;2Þ ¼ �b
2 ~c3. (8c)

The boundary conditions to be applied to the dimensionless equations for an edge parallel to the
X1-normalized axis (X2 ¼ 0 or X2 ¼ 1) are given by

~M22 ¼ 0; ~c1 ¼ 0; ~c3 ¼ 0 for a simply supported edge; (9a2c)

~M22 ¼ 0; ~M12 ¼ 0; ~Q2 þ
Z
y
~N2
~c3;2 ¼ 0 for a free edge; (10a2c)

~c1 ¼ 0; ~c2 ¼ 0; ~c3 ¼ 0 for a clamped edge: (11a2c)

The corresponding boundary conditions for the simply supported edge at both X1 ¼ 0 and X1 ¼ 1 are
obtained by interchanging subscripts 1 and 2 in Eqs. (9a–c).

The three dimensionless governing Eqs. (8a–c) may be solved (see Appendix A for details) by representing
the three dimensionless functions ~c1,

~c2 and
~c3 in terms of the three dimensionless potentials W1, W2 and W3

as [37,38]

~c1 ¼ C1W 1;1 þ C2W 2;1 � ZW 3;2; ~c2 ¼ C1ZW 1;2 þ C2ZW 2;2 þW 3;1, (12a,b)

~c3 ¼W 1 þW 2, (12c)

where W1, W2 and W3 are characterized by the equations,

W 1;11 þ Z2W 1;22 ¼ �a21W 1; W 2;11 þ Z2W 2;22 ¼ �a22W 2; W 3;11 þ Z2W 3;22 ¼ �a23W 3, (13a2c)

and C1, C2, a1, a2 and a3 are coefficients to be determined.
For the plate with simply supported edges at both X1 ¼ 0 and X1 ¼ 1, one set of solutions to Eqs. (13a–c)

may be given by

W 1 ¼ ½A1 sinðl1X 2Þ þ A2 cosðl1X 2Þ�sin ðmX 1Þ, (14a)

W 2 ¼ ½A3 sinhðl2X 2Þ þ A4 coshðl2X 2Þ�sin ðmX 1Þ, (14b)

W 3 ¼ ½A5 sinhðl3X 2Þ þ A6 coshðl3X 2Þ�cos ðmX 1Þ, (14c)

where m ¼ mp; m ¼ 1,2,y and Ai are the arbitrary constants. li and m are also related to the ai by

a21 ¼ m2 þ Z2l21; a22 ¼ m2 � Z2l22; a23 ¼ m2 � Z2l23. (15a2c)
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The details of existence of the other sets of solutions of Eqs. (13a–c) are given in Appendix B. It should be
emphasized that, as shown in Appendix B, the set of solutions given in Eqs. (14a–c) are based on the
assumption that a1

240, a2
2o0, a3

2o0.
As shown in Appendix A, the coefficients l1, l2 and a3 are expressed as

l21 ¼
�lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 4a

p
2

; l22 ¼
lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 4a

p
2

; a23 ¼
12k2

b2d2
a21a

2
2 ¼

k2b2

y
�

y
n1

,

l23 ¼
1

Z2
m2p2 �

k2b2

y
þ

y
n1

� �
, (16a 2 d)

where

l ¼
a1m2 þ a2m2 � a3 � a5

a2Z2
; a ¼

a1m4 � ða3 þ a4Þm2 þ a6

a2Z4
(17a,b)

and ai(i ¼ 1,2,y,6) are given by Eqs. (A.2)–(A.7). Thus upon utilizing Eqs. (15a–c), a1, a2 and l3 can be
determined. It is also shown that, to satisfy Eqs. (8a–c) after introducing Eqs. (12a–c), we have

C1 ¼
y

a21 � n1a23
¼

a1m2 þ a2Z2l
2
1 � a3

a21
; C2 ¼

y
a22 � n1a23

¼
a1m2 � a2Z2l

2
2 � a3

a22
. (18a,b)

3. Vibration and buckling criteria

In order to investigate the exact free vibration problem as well as obtaining the exact critical buckling load
parameters of the rectangular plates for all the six combinations of boundary conditions shown in Fig. 2, we
may assume:

~N1 ¼ x1 ~Ncr; ~N2 ¼ x2 ~Ncr, (19a,b)

where x1 and x2 are the scaling parameters and ~Ncr is the dimensionless critical buckling load. Substituting
Eqs. (A.2–A.7), given in Appendix A, into Eqs. (17a, b), we obtain

l ¼
y½ð2yþ x1 ~Ncr þ x2 ~NcrÞm

2p2 þ x2 ~Ncry� � b2½yþ ðyþ x2 ~NcrÞk2n1�

ðyþ ~K2 þ x2 ~NcrÞZ2y
, (20a)

a ¼ ðb4k2n1 � b2fy2 þ ½yþ ðyþ x2 ~NcrÞk2n1�m2p2g

þ ½x1 ~Ncrðyþm2p2Þ�ym2p2 þm4p4y2Þ=ððyþ x2 ~NcrÞZ4yÞ, (20b)

In view of Eqs. (15a–c) and Eq. (16c), Eqs. (18a, b) may also be written as

C1 ¼
y2

y2 þ yðZ2l21 þm2p2Þ � b2k2n1
, (21a)

C2 ¼
y2

y2 � yðZ2l22 �m2p2Þ � b2k2n1
, (21b)

where l1 and l2 may be obtained from Eqs. (16a, b), respectively. Introducing Eqs. (14a–c) in Eqs. (12a–c) and
substituting the results into the three appropriate boundary conditions along the edges X2 ¼ 0 and X2 ¼ 1
leads to a characteristic determinant of the six order for each m (m ¼ mp, m ¼ 1,2,y). Expanding the
determinant and collecting terms yields a characteristic equation. The characteristic equations for all the six
combinations of edge conditions are listed below:

Case 1. S-S-S-S

sin l1 sinh l2 sinh l3 ¼ 0. (22)
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Case 2. S-C-S-S

ðC1 � C2Þm2 tan l1 tanh l2 � Z2l3ðC1l1 tanh l2 � C2l2 tan l1Þtanh l3 ¼ 0. (23)

Case 3. S-C-S-C

2ðC1 � C2ÞZ2m2l3½C2l2ðcosh l2 cosh l3 � 1Þsin l1 � C1l1ðcos l1 cosh l3 � 1Þsinh l2�

þ ½ðC1 � C2Þ
2m4 þ ðC2

2l
2
2 � C2

1l
2
1ÞZ

4l23�sin l1 sinhl2 sinh l3

� 2C1C2Z4l
2
3l1l2ðcos l1 cosh l2 � 1Þsinhl3 ¼ 0. (24)

Case 4. S-S-S-F

C2l1L1L2 tanh l2 þ C1l2L3L4 tan l1 � 2ðC1 � C2ÞZ2m2l1l2l3ð1� nÞð1þ L5Þ tanh l3 ¼ 0, (25)

where

L1 ¼ ðC1 � 1� L5ÞZ2l
2
3 � ðC1 þ 1þ L5Þm2; L2 ¼ Z2l22 � nm2, (26a,b)

L3 ¼ ðC2 � 1� L5ÞZ2l
2
3 � ðC2 þ 1þ L5Þm2; L4 ¼ Z2l21 þ nm2, (26c,d)

L5 ¼ x2 ~Ncr=y. (26e)

Case 5. S-F-S-F

4ðC1 � C2ÞZ2m2l1l2l3½C1l2L3L4ðcos l1 cosh l3 � 1Þsinh l2
� C2l1L1L2ðcosh l2 cosh l3 � 1Þsin l1�ð1� nÞ

þ ½4ðC1 � C2Þ
2Z4m4l21l

2
2l

2
3ð1� nÞ2 þ C2

2l
2
1L

2
1L

2
2 � C2

1l
2
2L2

3L2
4�sin l1 sinhl2 sinhl3

� 2C1C2l1l2L1L2L3L4ðcos l1 coshl2 � 1Þsinh l3 ¼ 0, (27)

Case 6. S-C-S-F

l1l2l3Z2½C2
2L1L2 � C2

1L3L4 � 2ð1þ L5ÞðC1 � C2Þ
2m4ð1� nÞ�cos l1 cosh l2 cosh l3

þ ðC1 � C2ÞC2l1m2f½L1L2 � 2ð1þ L5Þð1� nÞl22l
2
3Z

4�sinh l2 sinh l3

þ l2l3Z2½L1ð1� nÞ � 2L2ð1þ L5Þ�gcos l1

þ ðC1 � C2ÞC1l2m2f½L3L4 � 2ð1þ L5Þð1� nÞl21l
2
3Z

4�sin l1 sinh l3

� l1l3Z2½L3ð1� nÞ þ 2L4ð1þ L5Þ�gcosh l2

þ C1C2l3Z2½ðL1L2l
2
1 þ L3L4l

2
2Þsin l1 sinh l2 þ l1l2ðL1L4 � L2L3Þ�cosh l3 ¼ 0. (28)

In Eqs. (22)–(28) l1 and l2 are related to l and a given by Eqs. (20a, b) through relations expressed by
Eqs. (16a, b).

For given values of x1, x2, y, Z and n the characteristic equations are functions of b, m and ~Ncr. Depending
on selection of x1 and x2, which may be either (�1,0), (0,�1) or (�1,�1), the critical buckling load parameter
~Ncr may be determined by setting b ¼ 0 (i.e. zero natural frequency) in the corresponding characteristic
equation of each individual cases. Upon testing the different integer values of m (usually m ¼ 1,2,3,y) the
lowest value of solved equation is selected.

4. Comparison with known results

In order to validate the accuracy of the present method, a comparison has been carried out with previously
published results by Leissa and Kang [15], Reddy and Phan [18], Kitipornchai et al. [30], Wang et al. [20],
Shufrin and Eisenberger [35], Lam et al. [25], Liew et al. [19], Mizusawa [24] and Xiang [29] for both thin
(d ¼ 0.001) and moderately thick square rectangular plates for all the six considered boundary conditions.
Plates are subjected to monoaxial in-plane compressive applied loads in the x1 (x1 ¼ �1, x2 ¼ 0) and x2

(x1 ¼ 0, x2 ¼ �1) directions and equal biaxial in-plane compressive applied loads (x1 ¼ �1, x2 ¼ �1).
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Table 1

Comparison study of buckling load parameters, ~Ncr=p2 ¼ Ncra
2=p2D, for square Mindlin plates having various boundary conditions and

subjected to monoaxial in-plane compressive applied load in the X1 direction (x1 ¼ �1, x2 ¼ 0)

Boundary conditions Method d ¼ h/a

0.001 0.05 0.1 0.2

S-S-S-S Mizusawa [24] 4 (3.928) (3.729) (3.119)

Mizusawa [24] 4 3.944 3.784 3.256

Presenta 4 3.9437 3.7838 3.2558

Shufrin and Eisenberger [35] – – 3.7865 3.2637

Presentb 4 3.9444 3.7864 3.2637

S-C-S-C Mizusawa [24] 7.691 (7.228) (6.178) (4.056)

Mizusawa [24] 7.691 7.299 6.370 4.320

Presenta 7.6911 7.2989 6.3698 4.3204

S-C-S-S Mizusawa [24] 5.740 (5.574) (5.140) (3.876)

Presenta 5.7401 5.5977 5.2171 4.1364

S-C-S-F Mizusawa [24] 1.653 (1.615) (1.539) (1.323)

Mizusawa [24] 1.653 1.620 1.556 1.370

Presenta 1.6522 1.6197 1.5558 1.3701

S-S-S-F Mizusawa [24] 1.402 (1.378) (1.327) (1.173)

Presenta 1.4014 1.3813 1.3707 1.2138

S-F-S-F Mizusawa [24] 0.9523 (0.9412) (0.9146) (0.8274)

Presenta 0.95225 0.94314 0.92187 0.85011

Shufrin and Eisenberger [35] – 0.9433 0.9222 0.8512

Presentb 0.95225 0.94324 0.92222 0.85124

( ) Considering higher-order shear strain.
aShear correction factor k2 ¼ p2/12.
bShear correction factor k2 ¼ 5/6.
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The buckling load parameters ~Ncr=p2 are listed in Tables 1 and 2 for d ¼ 0.001, 0.05, 0.1 and 0.2 together
with the available results by Mizusawa [24], obtained by using the spline strip method, and by Shufrin and
Eisenberger [35], obtained by using the Levy method. It can be observed an excellent agreement between the
present results and those given by Shufrin and Eisenberger [35]. Good agreement has also been achieved
between the present results and those of Mizusawa [24]. Note that higher-order terms (in the transverse shear
strain) have been considered in Mizusawa’s [24] study. Those results are shown in parentheses in Tables 1
and 2 to distinguish them from the rest of results. Full agreement of the present results for S-S-S-S, S-C-S-F,
S-S-S-F and S-F-S-F plates subjected to equal biaxial in-plane compressive loads (x1 ¼ �1, x2 ¼ �1) with the
solutions of Liew et al. [21] and Xiang [29], obtained by using the pb-2 Rayleigh–Ritz method, is shown in
Table 3 for both thin and moderately thick square rectangular plates.

5. Results and discussion

The critical buckling load parameters obtained from the exact characteristic equations presented in
Section 3 have been expressed in dimensionless form ~Ncr ¼ Ncra

2=D, where the symbols are defined in
Section 2. Numerical calculations have been performed for each of the six different boundary conditions
shown in Fig. 2. In the numerical calculations, Poisson’s ratio n ¼ 0.3 and shear correction factor k2 ¼ 0.86667
have been used. The results are given in Tables 4–9 for the thickness to length ratios d ¼ 0.001, 0.001, 0.1, and
0.2 over a range of a aspect ratios Z ¼ 0.4, 0.5, 2/3, 1, 1.5, 2 and 2.5. In Tables 4–9, for each value of Z and d,
the dimensionless critical buckling load parameters ~Ncr are given for three in-plane loading cases, namely,
monoaxial in-plane compressive load in the X1-direction (x1 ¼ �1, x2 ¼ 0), monoaxial in-plane compressive
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Table 2

Comparison study of buckling load parameters, ~Ncr=p2 ¼ Ncra
2=p2D, for square Mindlin plates having various boundary conditions and

subjected to monoaxial in-plane compressive applied load in the X2 direction (x1 ¼ 0, x2 ¼ �1)

Boundary conditions Method d

0.001 0.05 0.1 0.2

S-S-S-S Mizusawa [24] 4 (3.928) (3.729) (3.119)

Presenta 4 3.9437 3.7838 3.2558

Shufrin and Eisenberger [35] – – 3.7865 3.2637

Presentb 4 3.9444 3.78645 3.2637

S-C-S-C Mizusawa [24] 6.743 (6.462) (5.765) (4.109)

Presenta 6.7431 6.5238 5.9487 4.4004

S-C-S-S Mizusawa [24] 4.847 (4.717) (4.372) (3.418)

Presenta 4.8471 4.7454 4.4656 3.6115

S-C-S-F Mizusawa [24] 2.392 (2.260) (2.078) (1.657)

Liew et al.[19] – 2.2667 2.1010 –

Presenta 2.3901 2.2667 2.1010 1.7200

S-S-S-F Mizusawa [24] 2.366 (2.237) (2.060) (1.657)

Liew et al.[19] – 2.2442 2.0829 –

Presenta 2.3639 2.2442 2.0829 1.7105

S-F-S-F Mizusawa [24] 2.043 (1.942) (1.807) (1.497)

Liew et al.[19] – 1.9456 1.8216 –

Presenta 2.0413 1.9457 1.8216 1.5333

Shufrin and Eisenberger [35] – 1.9469 1.8234 1.5372

Presentb 2.0413 1.9464 1.8234 1.5372

( ) Considering higher-order shear strain.
aShear correction factor k2 ¼ p2/12.
bShear correction factor k2 ¼ 5/6.

Table 3

Comparison study of buckling load parameters, ~Ncr=p2 ¼ Ncra
2=p2D, for square Mindlin plates having various boundary conditions and

subjected to equal biaxial in-plane compressive applied loads (x1 ¼ �1, x2 ¼ �1)

Boundary conditions Method d

0.001 0.005 0.05 0.1 0.2

S-S-S-S Xiang [29] 2 – 1.9719 1.8920 1.7723

Presenta 2 1.9997 1.9718 1.8919 1.7722

S-C-S-F Liew et al. [19] – 1.1412 1.1119 1.0641 1.0049

Presentb 1.1431 1.1412 1.1119 1.0641 1.0049

S-S-S-F Liew et al. [19] – 1.0535 1.0323 0.99542 0.94760

Presentb 1.0548 1.0535 1.0322 0.99541 0.94758

S-F-S-F Shufrin and Eisenberger [35] – – 0.9208 0.8977 0.8650

Liew et al. [19] – 0.93160 0.92071 0.89774 0.86505

Presentb 0.93209 0.93160 0.92071 0.89774 0.86504

aShear correction factor k2 ¼ 0.823045.
bShear correction factor k2 ¼ 5/6.
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load in X2-direction (x1 ¼ 0, x2 ¼ �1) and equal biaxial in-plane compressive loads (x1 ¼ �1, x2 ¼ �1). The
results are presented with considerable accuracy simply because they were easily obtained to the accuracy
given, and because they may be used as a benchmark.
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Table 4

Buckling load parameters, ~Ncr ¼ Ncra
2=D, for S-S-S-S rectangular Mindlin plates ð ~N1 ¼ x1 ~Ncr; ~N2 ¼ x2 ~NcrÞ.

(x1, x2) d Z ¼ 0.4 Z ¼ 0.5 Z ¼ 2/3 Z ¼ 1 Z ¼ 1.5 Z ¼ 2 Z ¼ 2.5

~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m

(�1,0) 0.001 13.280498 1 15.421205 1 20.592057 1 39.478204 1 96.381222 1 157.910245 1 255.022775 3

0.01 13.276364 1 15.416032 1 20.584076 1 39.457021 1 96.219798 1 157.571876 1 253.983122 3

0.1 12.875571 1 14.915722 1 19.816043 1 37.447690 1 82.416286 1 129.765726 1 180.427919 6

0.2 11.796432 1 13.580179 1 17.803107 1 32.441432 1 57.444097 1 76.902078 1 87.667294 6

(0,�1) 0.001 40.805061 1 39.478203 1 42.836502 1 39.478203 1 46.331901 1 61.684191 1 83.001741 1

0.01 40.778353 1 39.457021 1 42.804585 1 39.457021 1 46.291517 1 61.601514 1 82.840527 1

0.1 38.273227 1 37.447690 1 39.836454 1 37.447690 1 42.580103 1 54.320716 1 69.367296 1

0.2 32.266500 1 32.441432 1 32.919274 1 32.441432 1 34.257183 1 39.995897 1 46.466346 1

(�1,�1) 0.001 11.448705 1 12.336964 1 14.256039 1 19.739102 1 32.075932 1 49.347353 1 71.553225 1

0.01 11.445141 1 12.332826 1 14.250514 1 19.728510 1 32.047973 1 49.281211 1 71.414247 1

0.1 11.099630 1 11.932578 1 13.718799 1 18.723845 1 29.478533 1 43.456572 1 59.799393 1

0.2 10.169338 1 10.864143 1 12.325227 1 16.220716 1 23.716511 1 31.996718 1 40.057195 1

Table 5

Buckling load parameters, ~Ncr ¼ Ncra
2=D, for S-C-S-S rectangular Mindlin plates ð ~N1 ¼ x1 ~Ncr; ~N2 ¼ x2 ~NcrÞ

(x1, x2) d Z ¼ 0.4 Z ¼ 0.5 Z ¼ 2/3 Z ¼ 1 Z ¼ 1.5 Z ¼ 2 Z ¼ 2.5

~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m

(�1,0) 0.001 13.989148 1 16.909363 1 24.588768 1 56.653026 1 120.605362 1 221.289125 1 334.506381 3

0.01 13.984260 1 16.902466 1 24.575333 1 56.598315 1 120.300623 1 220.209713 1 332.320553 3

0.1 13.515706 1 16.247894 1 23.325285 1 51.727083 1 96.958820 1 151.127293 1 202.956572 4

0.2 12.284667 1 14.573567 1 20.299130 1 41.394657 1 62.550161 1 78.916068 1 88.028497 6

(0,�1) 0.001 41.121939 1 41.814166 1 44.381101 1 47.839054 1 68.730339 1 102.507741 1 147.211382 1

0.01 41.098866 1 41.788087 1 44.353494 1 47.800457 1 68.623785 1 102.240646 1 146.628809 1

0.1 38.872664 1 39.327498 1 41.680705 1 44.250502 1 59.522778 1 81.347872 1 105.465834 1

0.2 33.007680 1 33.270595 1 34.672932 1 36.117964 1 42.767223 1 50.785399 1 57.741531 1

(�1,�1) 0.001 11.906476 1 13.237267 1 16.365561 1 26.279529 1 50.348550 1 85.078680 1 130.173604 1

0.01 11.902468 1 13.232180 1 16.357440 1 26.257608 1 50.268168 1 84.852919 1 129.652278 1

0.1 11.516459 1 12.745925 1 15.592868 1 24.266084 1 43.440418 1 67.249248 1 92.895600 1

0.2 10.492953 1 11.483084 1 13.692782 1 19.834657 1 31.021458 1 41.693257 1 50.526135 1
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5.1. Analysis of linear buckling mode shapes

For each dimensionless critical buckling load parameter, the corresponding mode shape is described by the
number of half-waves in the X1- and X2-directions, respectively. For example, an S-C-S-S plate subjected to
monoaxial in-plane compressive load in the X1-direction has five half-waves (m ¼ 5) in the X1-direction and
one (n ¼ 1) in the X2-direction in its critical buckling mode shape for Z ¼ 2.5 and d ¼ 0.18. The critical
buckling mode shapes for all the six considered boundary conditions subjected to monoaxial in-plane
compressive load in the X1-direction (x1 ¼ �1, x2 ¼ 0) have a single half-wave in the X2-direction. For plates
subjected to the monoaxial in-plane load in the X2-direction, the critical buckling mode shapes for all the six
considered plates subjected to monoaxial in-plane compressive load in the X2-direction (x1 ¼ 0, x2 ¼ �1) have
a single half-wave in the X1-direction (m ¼ 1); that is, no nodal lines along the unloaded edges exist. Similar to
the loading configuration as described by (x1 ¼ �1, x2 ¼ 0), the critical buckling mode shapes for all six
considered plates within the range of Z and d given in Tables 4–9, have a single half-wave in the X1-direction
(n ¼ 1), when the loading configuration changes to (x1 ¼ �1, x2 ¼ �1). However, there is possibility of
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Table 6

Buckling load parameters, ~Ncr ¼ Ncra
2=D, for S-C-S-C rectangular Mindlin plates ð ~N1 ¼ x1 ~Ncr; ~N2 ¼ x2 ~NcrÞ

(x1, x2) d Z ¼ 0.4 Z ¼ 0.5 Z ¼ 2/3 Z ¼ 1 Z ¼ 1.5 Z ¼ 2 Z ¼ 2.5

~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m

(�1,0) 0.001 14.919490 1 18.977382 1 30.580624 1 75.908333 1 158.014518 1 275.207980 1 431.679400 4

0.01 14.913439 1 18.967541 1 30.556443 1 75.751492 1 157.410593 1 273.274597 1 426.850398 4

0.1 14.342008 1 18.055467 1 28.388438 1 63.404106 1 116.406548 1 168.416063 1 217.402563 4

0.2 12.890890 1 15.851026 1 23.616847 1 43.567623 1 65.506456 1 80.032333 1 88.307519 7

(0,�1) 0.001 44.633691 1 47.839054 1 53.045569 1 66.551761 1 111.846806 1 179.494196 1 267.644593 1

0.01 44.605700 1 47.800462 1 53.006792 1 66.467258 1 111.552969 1 178.685138 1 265.797003 1

0.1 41.951350 1 44.250506 1 49.333458 1 59.064064 1 88.632854 1 123.678040 1 157.959031 1

0.2 35.234905 1 36.117969 1 40.017850 1 44.221938 1 55.045273 1 64.520463 1 71.392578 1

(�1,�1) 0.001 12.566475 1 14.617368 1 19.834763 1 37.799103 1 83.662918 1 150.984923 1 231.834547 2

0.01 12.561725 1 14.610535 1 19.821224 1 37.749567 1 83.439474 1 150.299431 1 230.060685 2

0.1 12.109220 1 13.969074 1 18.583660 1 33.470909 1 66.104129 1 100.715609 1 132.908965 2

0.2 10.938568 1 12.373489 1 15.733275 1 25.178902 1 41.013668 1 52.357277 1 60.508358 2

Table 7

Buckling load parameters, ~Ncr ¼ Ncra
2=D, for S-S-S-F rectangular Mindlin plates ð ~N1 ¼ x1 ~Ncr; ~N2 ¼ x2 ~NcrÞ

(x1, x2) d Z ¼ 0.4 Z ¼ 0.5 Z ¼ 2/3 Z ¼ 1 Z ¼ 1.5 Z ¼ 2 Z ¼ 2.5

~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m

(�1,0) 0.001 10.388390 1 10.746877 1 11.536996 1 13.831383 1 19.042797 1 26.366058 1 35.793556 1

0.01 10.382133 1 10.739327 1 11.526539 1 13.811088 1 18.992415 1 26.258793 1 35.593483 1

0.1 10.075046 1 10.408425 1 11.142211 1 13.257101 1 17.977429 1 24.457914 1 32.598809 1

0.2 9.299893 1 9.590606 1 10.229108 1 12.054586 1 16.058631 1 21.430636 1 28.011069 1

(0,�1) 0.001 22.781855 1 22.782251 1 22.730519 1 23.331097 1 22.879899 1 20.147421 1 18.152513 1

0.01 22.614851 1 22.615032 1 22.565404 1 23.154752 1 22.709213 1 20.001311 1 18.008016 1

0.1 20.247457 1 20.246817 1 20.217433 1 20.646926 1 20.353316 1 18.047075 1 16.149397 1

0.2 16.843522 1 16.843153 1 16.829688 1 17.074388 1 16.973422 1 15.284579 1 13.632384 1

(�1,�1) 0.001 9.716299 1 9.793934 1 9.966750 1 10.410867 1 11.125024 1 11.736470 1 12.204967 1

0.01 9.702060 1 9.777844 1 9.946938 1 10.381657 1 11.078379 1 11.670336 1 12.118570 1

0.1 9.329653 1 9.384918 1 9.511919 1 9.840696 1 10.347413 1 10.735373 1 10.978016 1

0.2 8.523821 1 8.557420 1 8.638288 1 8.850842 1 9.158155 1 9.344447 1 9.393642 1
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existence of higher order n. Inspecting the critical buckling mode shapes for the some values of Z42.5,
confirms the existence of the mode shapes which may be described by (m ¼ 1, n ¼ 2). Inspection of Tables 4–9
also indicates that, within the range of Z and d given in these tables, the variety of the critical buckling mode
shapes for all the six considered plates may be expressed by (1,1), (2,1), (3,1), (4,1), (5,1), (6,1) and (7,1) modes
for plates subjected to monoaxial load in the X1-direction (x1 ¼ �1, x2 ¼ 0). Similarly, the critical mode
shapes are limited to (1,1), (1,2) and (1,3) modes for plates subjected to monoaxial load in the X2-direction
(x1 ¼ 0, x2 ¼ �1), and to (1,1) and (2,1) modes for plates subjected to equal biaxial loads (x1 ¼ �1, x2 ¼ �1).
The typical critical buckling mode shapes for plates with thickness ratio d ¼ 0.2 and aspect ratios Z ¼ 2.5 and
0.4 are given by contour plots in Figs. 3 and 4. These figures show the shape of the buckled plate in each mode,
for all the six different boundary conditions and all the three types of in-plane loading cases considered. The
mathematical expression of mode shapes are given in Appendix C. For all the six cases the wave forms are sine
functions in the X1-direction. The wave forms in the X2-direction are sine function exactly for the S-S-S-S case
only, whereas for the other cases the forms are only approximately sinusoidal. As a consequence, it can be
observed in Figs. 3 and 4 that the nodal lines (for transverse displacement) lying in the X2-direction (five for a
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Table 8

Buckling load parameters, ~Ncr ¼ Ncra
2=D, for S-F-S-F rectangular Mindlin plates ð ~N1 ¼ x1 ~Ncr; ~N2 ¼ x2 ~NcrÞ

(x1, x2) d Z ¼ 0.4 Z ¼ 0.5 Z ¼ 2/3 Z ¼ 1 Z ¼ 1.5 Z ¼ 2 Z ¼ 2.5

~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m

(�1,0) 0.001 9.651388 1 9.604314 1 9.529572 1 9.398358 1 9.255947 1 9.167625 1 9.113162 1

0.01 9.646287 1 9.598768 1 9.523357 1 9.391159 1 9.248205 1 9.160045 1 9.106003 1

0.1 9.375177 1 9.325573 1 9.247239 1 9.112050 1 8.971891 1 8.891002 1 8.844839 1

0.2 8.679801 1 8.632796 1 8.558944 1 8.434126 1 8.312382 1 8.248819 1 8.216368 1

(0,�1) 0.001 22.722608 1 22.295281 1 22.252165 1 20.147421 1 16.914476 1 15.594572 1 14.956221 1

0.01 22.555180 1 22.135788 1 22.091907 1 20.001311 1 16.761460 1 15.413724 1 14.742174 1

0.1 20.199385 1 19.883230 1 19.807348 1 18.047074 1 14.863227 1 13.292184 1 12.325797 1

0.2 16.817774 1 16.624882 1 16.521587 1 15.284578 1 12.399596 1 10.724113 1 9.550652 1

(�1,�1) 0.001 9.456449 1 9.399642 1 9.317343 1 9.199447 1 9.104095 1 9.057540 1 9.032521 1

0.01 9.445386 1 9.388217 1 9.305541 1 9.187754 1 9.093588 1 9.048318 1 9.024358 1

0.1 9.117073 1 9.060047 1 8.979102 1 8.871143 1 8.797076 1 8.769022 1 8.757980 1

0.2 8.373065 1 8.323660 1 8.255286 1 8.173842 1 8.134317 1 8.129924 1 8.134328 1

Table 9

Buckling load parameters, ~Ncr ¼ Ncra
2=D, for S-C-S-F rectangular Mindlin plates ð ~N1 ¼ x1 ~Ncr; ~N2 ¼ x2 ~NcrÞ

(x1, x2) d Z ¼ 0.4 Z ¼ 0.5 Z ¼ 2/3 Z ¼ 1 Z ¼ 1.5 Z ¼ 2 Z ¼ 2.5

~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m ~Ncr m

(�1,0) 0.001 10.517837 1 11.012034 1 12.203649 1 16.306648 1 28.663682 1 52.718216 1 85.401986 2

0.01 10.511051 1 11.003412 1 12.190336 1 16.274002 1 28.558937 1 52.457263 1 84.829241 2

0.1 10.189581 1 10.642566 1 11.726966 1 15.394207 1 26.121935 1 46.387846 1 68.346156 2

0.2 9.387772 1 9.769217 1 10.669775 1 13.627190 1 21.886378 1 36.692284 1 46.501252 2

(0,�1) 0.001 22.783449 1 22.785246 1 22.907573 1 23.590060 1 23.847247 1 25.897575 1 30.158359 1

0.01 22.616341 1 22.618063 1 22.738384 1 23.407796 1 23.662029 1 25.692630 1 29.919152 1

0.1 20.248073 1 20.249192 1 20.332618 1 20.827396 1 21.072611 1 22.727222 1 26.195608 1

0.2 16.843679 1 16.844266 1 16.884265 1 17.171725 1 17.423632 1 18.598532 1 20.997708 1

(�1,�1) 0.001 9.759345 1 9.869577 1 10.211032 1 11.282178 1 14.010953 1 18.093580 1 23.493915 1

0.01 9.744070 1 9.866929 1 10.186771 1 11.239951 1 13.931286 1 17.969432 1 23.321253 1

0.1 9.359405 1 9.452941 1 9.694772 1 10.523468 1 12.710612 1 16.061858 1 20.517889 1

0.2 8.540609 1 8.598204 1 8.754655 1 9.319684 1 10.888515 1 13.343285 1 16.561900 1
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(6,1) mode) are evenly spaced. On the other hand those lying in the X2-direction (two for a (1,3) mode), except
for the S-S-S-S case, are not evenly spaced.

The critical buckling mode shapes given in Figs. 3 and 4, where the double geometric symmetry exist
(e.g., S-S-S-S , S-C-S-C and S-F-S-F) may be classified as X2-symmetric or X2-antisymmetric modes depend on
whether or not having an axis of symmetry with respect to the X2-coordinate. According to this classification
(1,1), (1,2), (1,3) and (7,1) modes are X2-symmetric modes, where as (2,1) mode is an X2-antisymmetric mode.

The close examination of the contour plots also suggest that the modes can be classified into four distinct
symmetry classes: namely, double-symmetry modes (SS), symmetry–antisymmetry modes (SA), antisymme-
try–symmetry modes (AS) and double-antisymmetry modes (AA), about the midplanes parallel to the X1–X3

and X2–X3 planes. According to these symmetry classes ((1,1), (1,3), (7,1)), ((2,1), (6,1)) and (1,2) modes in
Figs. 3 and 4 may be given as an examples of SS, SA, and AS modes, respectively. On the other hand ((1,1),
(1,2), (1,3)) and ((2,1), (6,1)) modes in Figs. 3 and 4 may be given as an example of AS and AA modes,
respectively. Note that where there is no geometric symmetry along the edges parallel to the X1-axis, the
contours are not symmetric about the midplane parallel to the X1–X3 plane.
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Boundary 
Conditions
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~
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~
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~
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~
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~
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~
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~
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~
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~
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~

Ncr = 71.392578
~

Ncr = 88.307519
~

Ncr = 10.938568
~Ncr = 35.234905

~
Ncr = 12.890890
~

S-C-S-C

� = 0.4

(�1 = -1, �2 = 0) (�1 = 0, �2 = -1) (�1 = -1, �2 = -1) (�1 = -1, �2 = 0) (�1 = 0, �2 = -1) (�1 = -1, �2 = -1)

� = 2.5

Fig. 3. Buckling mode shapes of rectangular Mindlin plates for S-S-S-S, S-C-S-S and S-C-S-C boundary conditions.
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Conditions

Ncr = 9.393642
~

Ncr = 13.632384
~

Ncr = 28.011069
~

Ncr = 8.523821
~

Ncr = 16.843522
~

Ncr = 9.299893 
~

S-S-S-F

Ncr = 8.134328
~

Ncr = 9.550652
~

Ncr = 8.216368
~

Ncr = 8.373065
~
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~

Ncr = 8.679801
~
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~
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~
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~
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~

Ncr = 16.843679
~
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~
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� = 2.5� = 0.4

Fig. 4. Buckling mode shapes of rectangular Mindlin plates for S-S-S-F, S-F-S-F and S-C-S-F boundary conditions.
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5.2. Effect of aspect ratio on the critical buckling load

In order to study the effect of the aspect ratio on the buckling of plates, attention is focused on Tables 4–9.
It is observed that for the loading case (x1 ¼ �1, x2 ¼ 0), the dimensionless critical buckling loads ~Ncr,
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except for S-F-S-F plates, increase with the plate aspect ratio Z keeping the thickness ratio d constant. This
observation indicates that, between two plates having identical length a, thickness h and boundary conditions,
the one which has shorter width b reaches to instability under greater monoaxial in-plane compressive applied
load in the X1-direction. Unlike the rest of plates, the S-F-S-F plates behave differently. For these plates the
dimensionless critical buckling loads decrease with increasing plate aspect ratio Z. Consider now Fig. 5 which
presents variations of ~Ncr=Z2 ¼ Ncrb

2=D versus Z for all the six boundary conditions for the loading case
(x1 ¼ �1, x2 ¼ 0). Results show the variation of the critical buckling load (not the dimensionless one) in plates
having an identical width b, thickness h and boundary conditions as a function of the length of the plates in t
he direction of the in-plane compressive applied load. One may also note that, for plates with S-S-S-F and
S-F-S-F boundary conditions, the number of half-waves along the X1-direction (m) remain unchanged for the
critical mode by increasing Z.

From Tables 4–9 one may study the variation of ~Ncr=Z2 ¼ Ncrb
2=D versus Z for plates subjected to

monoaxial in-plane compressive load in the X2-direction (x1 ¼ 0, x2 ¼ �1). For all the six considered plates,
the values of ~Ncr=Z2 ¼ Ncrb

2=D decrease with increasingZ. Note that for all the six considered plates subjected
to monoaxial in-plane compressive load in the X2-direction, there are no free edges along the direction parallel
to the applied in-plane load. Regardless of direction of the applied monoaxial in-plane load, between two
Fig. 5. Variations of buckling load parameters ~Ncr=Z2 ¼ Ncrb
2=D versus Z, for rectangular Mindlin plates having various boundary

conditions and subjected to monoaxial in-plane compressive applied loads (x1 ¼ �1, x2 ¼ 0).
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plates having identical thickness h and boundary conditions, the one which has smaller side along the
applied load reaches instability under larger load, provided that the dimensions of the other two edges are
the same. This is true except for the S-F-S-F plates subjected to monoaxial in-planes compressive load in the
X1-direction.

From the results presented in Tables 4–9, it is observed that for the loading case described as
(x1 ¼ 0, x2 ¼ �1), the dimensionless critical buckling load ~Ncr, for plate having S-C-S-S, S-C-S-C and
S-C-S-F boundary conditions, increases with Z if the thickness ratio d is kept constant. A typical variation of
~Ncr versus Z for all the six considered plates with thickness ratio d ¼ 0.1 is given in Fig. 6. The range of Z with
the same number of half-waves in the X2-direction (n) is indicated by dots in the figure. Inspection of curves
given in Fig. 6, gives an idea of how the critical buckling loads vary in plates having an identical length a,
thickness h and boundary conditions versus the width b.

Consideration may now be focused on plates subjected to equal biaxial in-plane compressive loads
(x1 ¼ �1, x2 ¼ �1). From the results presented in Tables 4–9, it is observed that for this loading case, the
dimensionless critical buckling load ~Ncr, expect for the S-F-S-F plates, increase with the aspect ratio Z if the
thickness ratio d is kept constant. For plates with S-F-S-F boundary conditions, results presented in Table 8
indicated that the value of ~Ncr initially decrease with increasingZ. The change of this initially decreasing trend
to the increasing one, within the range of Z and d covered in Table 5, may be observed for d ¼ 0.2 for values of
Z of 2 and 2.5. In particular, variations of ~Ncr versus Z are shown in Fig. 7 for d ¼ 0.1, 0.14 and 0.2. The
position at which the number of half-waves in the X2-direction changes from n ¼ 1 to 2 are also specified with
Fig. 6. Variations of buckling load parameters ~Ncr=Z2 ¼ Ncra
2=D versus Z, for rectangular Mindlin plates having various boundary

conditions and subjected to monoaxial in-plane compressive applied loads (x1 ¼ 0, x2 ¼ �1).
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Fig. 7. Variations of buckling load parameters ~Ncr=Z2 ¼ Ncra
2=D versus Z, for rectangular Mindlin plates with S-F-S-F boundary

condition and subjected to equal biaxial in-plane compressive applied loads (x1 ¼ �1, x2 ¼ �1).
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the symbol �. It is seen that by increasing d the critical buckling mode shapes are shifted from (1,1) to (1,2) for
smaller values of Z.

Fig. 8 presents the typical variations of ~Ncr=Z2 ¼ Ncrb
2=D versus Z for all the six considered plates subjected

to equal biaxial in-plane compressive applied loads. From the curves given in Fig. 8, it is seen that, for all the
six cases, the values of ~Ncr=Z2 ¼ Ncrb

2=D decrease with Z.

5.3. Effect of thickness ratio on the critical buckling load

The influence of the thickness ratio d on the nondimensional critical buckling loads for plates with specific
boundary conditions can also be examined by keeping the aspect ratio constant while varying the thickness
ratio. From the results presented in Tables 4–9 it can be easily observed that, as the thickness ratio d increases
from 0.001 to 0.2, the nondimensional critical buckling load decreases. Such behavior is due to the influence of
the transverse shear deformation in the plates. Moreover, it can be observed that shear deformation not only
reduces the values of ~Ncr, but also cause changes in the buckling shapes. As an example, for S-S-S-S plates
with aspect ratio Z ¼ 2.5 subject to monoaxial in-plane compressive load in the X1-direction, the number of
half-waves (m) varies from 3 to 6 as the values of d increases from 0.001 to 0.2.

5.4. Effect of boundary conditions on the critical buckling load

To study the effect of boundary conditions on the dimensionless critical buckling loads, the values of ~Ncr

listed in a specific row and column of Tables 4–9 may be selected from each table for each loading case and
arranged in terms of boundary conditions as shown in Table 10. From the results presented in this table,
it is observed that the lowest dimensionless critical buckling loads correspond to plates with less constraints.
As the number of supported edges increases, the values of ~Ncr also increase. Among all the six boundary
conditions considered in Table 10, it can be seen that the lowest and highest values of ~Ncr correspond to
S-F-S-F and S-C-S-C cases, respectively. Thus, constraints at the edges increase the flexural rigidity of the
plate, resulting in a higher critical buckling load.
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Fig. 8. Variations of buckling load parameters ~Ncr=Z2 ¼ Ncrb
2=D versus Z, for rectangular Mindlin plates having various boundary

conditions and subjected to equal biaxial in-plane compressive applied loads (x1 ¼ �1, x2 ¼ �1).
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In order to study the effect of the shear correction factor on the dimensionless critical buckling loads,
attention is placed again to Table 10. From the results presented in this table, it is observed that, for all of the
loading cases, the dimensionless critical buckling load ~Ncr increase with the shear correction factor.

5.5. Complementary results

In order to satisfy Eq. (22) (case of S-S-S-S boundary conditions), it is necessary that l1 ¼ np with integer values
of n. Thus for this case (and only this case), the dimensionless critical buckling load can be determined explicitly:

~Ncr ¼ �
yp2ðm2 þ n2Z2Þ2

ðm2p2 þ n2p2Z2 þ yÞðm2x1 þ n2Z2x2Þ
. (29)

For plates subjected to monoaxial in-plane compressive load in the X1-direction (x1 ¼ �1, x2 ¼ 0) we
obtain:

Nx1 ¼ �
yp2ðm2 þ n2Z2Þ2

ðm2p2 þ n2p2Z2 þ yÞm2
, (30)
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Table 10

Effects of shear deformation on buckling load parameters, ~Ncr ¼ Ncra
2=D, for different boundary conditions of rectangular Mindlin

plates with Z ¼ 1.5, d ¼ 0.2

Boundary conditions Loading cases

(x1 ¼ �1, x2 ¼ 0) (x1 ¼ 0, x2 ¼ �1) (x1 ¼ �1, x2 ¼ �1)

S-F-S-F (8.42030)a (11) (12.74146)a (12) (8.24146)a (11)

(8.31238)b (11) (12.39959)b (12) (8.13431)b (11)

(8.28064)c (11) (12.30198)c (12) (8.10287)c (11)

(8.26979)d (11) (12.26894)d (12) (8.09213)d (11)

S-S-S-F (16.35437)a (11) (17.45472)a (11) (9.33528)a (11)

(16.05363)b (11) (16.97342)b (11) (9.15815)b (11)

(15.97262)c (11) (16.83549)c (11) (9.10693)c (11)

(15.94336)d (11) (16.78876)d (11) (9.08953)d (11)

S-C-S-F (22.49508)a (11) (17.93638)a (11) (11.14802)a (11)

(21.88637)b (11) (17.42363)b (11) (10.88851)b (11)

(21.71217)c (11) (17.27709)c (11) (10.81416)c (11)

(21.65318)d (11) (17.22749)d (11) (10.78897)d (11)

S-S-S-S (60.71451)a (21) (35.49042)a (11) (24.57029)a (11)

(57.44409)b (21) (34.25718)b (11) (23.71651)b (11)

(56.53047)c (21) (33.90370)c (11) (23.47179)c (11)

(56.22333)d (21) (33.78397)d (11) (23.38890)d (11)

S-C-S-S (66.66637)a (21) (44.99570)a (11) (32.66068)a (11)

(62.55016)b (21) (42.76722)b (11) (31.02145)b (11)

(61.41673)c (21) (42.14227)c (11) (30.56256)c (11)

(61.03725)d (21) (41.93193)d (11) (30.40819)d (11)

S-C-S-C (71.10860)a (31) (59.00146)a (11) (43.94142)a (11)

(65.50645)b (31) (55.04527)b (11) (41.01366)b (11)

(63.99777)c (31) (53.95968)c (11) (41.01366)c (11)

(63.49585)d (31) (53.59660)d (11) (39.94425)d (11)

aShear correction factor k2 ¼ 1.
bShear correction factor k2 ¼ 0.86667.
cShear correction factor k2 ¼ 5/6.
dShear correction factor k2 ¼ p2/12.
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where Nx1 corresponds to ~Ncr for the loading case (x1 ¼ �1, x2 ¼ 0). Similarly, for plates subjected to
monoaxial in-plane compressive applied load in the X2-direction (x1 ¼ 0, x2 ¼ �1), Eq. (29) reduces to

Nx2 ¼ �
yp2ðm2 þ n2Z2Þ2

ðm2p2 þ n2p2Z2 þ yÞn2Z2
, (31)

where Nx2 corresponds to ~Ncr for the loading case (x1 ¼ 0, x2 ¼ �1). Upon assuming Z2 ¼ 1/Z1, y2 ¼ y1/Z1
2,

n2 ¼ m1 and n1 ¼ m2, Eqs. (30) and (31) give

Nx1 ¼ Z21Nx2, (32)

where subscripts 1 and 2 are used to distinguish y, m, n and Z in Eq. (30) from those in Eq. (31). Consider now
the dimensionless critical buckling loads listed in Table 4. It is seen that, for example, the (1,3) mode for
Z2 ¼ 0.4 and d2 ¼ 0.2 (with Nx2 ¼ 32.26650) listed for the loading case (x1 ¼ 0, x2 ¼ �1) can be related to the
(3,1) mode for Z1 ¼ 2.5 and d1 ¼ 0.08 (with Nx1 ¼ 201.66563) given for the loading case (x1 ¼ �1, x2 ¼ 0),
through the relation Eq. (32). In fact, the S-S-S-S plate with aspect ratio Z1 and thickness ratio d1 and
subjected to monoaxial in-plane compressive load in the X1-direction can be considered as the S-S-S-S plate
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with aspect ratio Z2 ¼ 1/Z1 and thickness ratio d2 ¼ Z1d1 which is subjected to monoaxial in-plane compressive
load in the X2-direction.

Consider now two S-S-S-S plates subjected to monoaxial in-plane compressive load in the X1-direction. By
using Eq. (30) one may write

N
n

x1 ¼
Z
n2

1

Z21
Nx1 if

Z1

Z
n

1

¼
m1

m
n

1

¼
d
n

1

d1
. (33)

For example, the dimensionless critical buckling load N
n

x1 ¼ 32:44143 given in Table 4 for Z
n

1 ¼ 1 and
d
n

1 ¼ 0:2, may related to the dimensionless critical buckling load Nx1 ¼ 129.76572 listed for Z1 ¼ 2 and
d1 ¼ 0.1 through Eq. (33). In fact, at nodal equispaced lines there are the same conditions that on simply
supported edges.

6. Conclusions

In this work the Mindlin plate theory is used to investigate the buckling behavior of moderately thick
rectangular plates subjected to monoaxial in-plane compressive load in the X1-direction (x1 ¼ �1, x2 ¼ 0),
equal biaxial in-plane compressive load (x1 ¼ �1, x2 ¼ �1) and monoaxial in-plane compressive load in the
X2-direction (x1 ¼ 0, x2 ¼ �1). The exact closed-form buckling equations are derived for the six cases
having two opposite sides simply supported. The six cases considered are namely S-S-S-S, S-C-S-S, S-C-S-C,
S-S-S-F, S-F-S-F and S-C-S-F plates. The advantages of the proposed closed-form buckling equations are the
following:
�
 They are capable of predicting with high accuracy the critical buckling load within the validity of the
Mindlin plate theory since an exact analytical solution is used.

�
 They provide a closed-form buckling equation that can be easily solved numerically by designers and

engineers.

The transverse deflection are also given in closed-form for all the six cases, and the buckled mode shapes can
be easily plotted. Accurate dimensionless critical buckling loads are presented for different in-plane loading
conditions, aspect ratios and thickness ratios; they can be used as a benchmark for numerical codes. The
effects of boundary conditions, loading conditions, aspect ratios and thickness ratios are examined and
discussed in detail. Finally, based on comparison with previously published results, the accuracy of the present
results is shown.

Appendix A

In order to solve the three coupled partial differential Eqs. (8a–c), it is more convenient to deal with a single
equation on the transverse deflection c3. This can be obtained by differentiating Eqs. (8a) and (8b) with
respect to X1 and X2, respectively, then multiplying the last one by Z, summing them up and by using Eq. (8c),
we obtain:

a1ð
~c3;11 þ Z2 ~c3;22Þ;11 þ a2Z2ð ~c3;11 þ Z2 ~c3;22Þ;22 þ a3ð

~c3;11 þ Z2 ~c3;22Þ

þ a4
~c3;11 þ a5Z2 ~c3;22 þ a6

~c3 ¼ 0, (A.1)

where

a1 ¼ 1þ
~N1

y
; a2 ¼ 1þ

~N2

y
; a3 ¼

b2

y
, (A.22A.4)

a4 ¼
b2k2n1

y
þ

b2k2n1
y2
� 1

� �
~N1; a5 ¼

b2k2n1
y
þ

b2k2n1
y2
� 1

� �
~N2, (A.5,A.6)
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a6 ¼
b2k2n1
y2
� 1

� �
b2. (A.7)

The solution of Eq. (A.1) may be assumed to be

c3 ¼W 1 þW 2 ¼ f 1ðX 1Þg1ðX 2Þ þ f 2ðX 1Þg2ðX 2Þ. (A.8)

Substituting the above solution into Eq. (A.1) yields

a1

f 1;1111

f 1

þ ða3 þ a4Þ
f 1;11

f 1

þ a2Z4
g1;2222

g1

þ ða3 þ a5ÞZ2
g1;22

g1

þ ða1 þ a2ÞZ2
f 1;11

f 1g1

g1;22 þ a6 ¼ 0, (A.9)

a1

f 2;1111

f 2

þ ða3 þ a4Þ
f 2;11

f 2

þ a2Z4
g2;2222

g2

þ ða3 þ a5ÞZ2
g2;22

g2

þ ða1 þ a2ÞZ2
f 2;11

f 2g2

g2;22 þ a6 ¼ 0. (A.10)

Inspection of Eqs. (A.9) and (A.10) suggests that the functions fi(X1) and gi(X2)(i ¼ 1,2) should be
characterized by the equations

f i;11 ¼ �m
2
i f i; gi;22 ¼ �l

2
i gi, (A.11,A.12)

where mi
2 and li

2 are separation constants to be determined. It can be easily shown that the solutions
of the equation fi,11 ¼ mi

2fi are not suitable for satisfying the boundary conditions when two opposite
edges at X1 ¼ 0 and 1 are simply supported. Hence, the following solutions to Eqs. (A.11) and (A.12) may be
selected:

f iðX 1Þ ¼ ~ai sinmiX 1 þ
~bi cosmiX 1, (A.13)

giðX 2Þ ¼ ~ci sin liX 2 þ
~di cos liX 2, (A.14)

giðX 2Þ ¼ cni sinhliX 2 þ dn

i cosh liX 2. (A.15)

As it was discussed in an earlier paper by Hosseini-Hashemi and Arsanjani [38], no loss of generality may
arise due to selection of any possible set of solutions. As a result we carry on our derivation based on the set of
selected solutions as

f iðX 1Þ ¼ ~ai sinmiX 1 þ
~bi cosmiX 1, (A.140)

g1ðX 2Þ ¼ ~c1 sin l1X 2 þ
~d1 cos l1X 2, (A.150)

g2ðX 2Þ ¼ cn2 sinhl2X 2 þ dn

2 coshl2X 2, (A.160)

which in turn give

f i;11 ¼ �m
2
i f i; g1;22 ¼ �l

2
1g1; g2;22 ¼ l22g2. (A.172A.19)

It is also pertinent to mention that, since W1 ¼ f1(X1)g1(X2) and W2 ¼ f2(X1)g2(X2) satisfy Eqs. (9a)
and (9b), respectively, the relationship between li, mi and ai for the set of selected solutions can be
expressed as

a21 ¼ m21 þ Z2l21; a22 ¼ m22 � Z2l22. (A.20,A.21)

Substituting now Eqs. (A.17)–(A.19) into Eqs. (A.9) and (A.10) gives

a2Z4l
4
1 þ ða1m21 þ a2m21 � a3 � a5ÞZ2l

2
1 þ a1m41 � ða3 þ a4Þm21 þ a6 ¼ 0, (A.22)

a2Z4l
4
2 � ða1m22 þ a2m22 � a3 � a5ÞZ2l

2
2 þ a1m42 � ða3 þ a4Þm22 þ a6 ¼ 0. (A.23)

Thus, for simply supported edges at X1 ¼ 0 and X1 ¼ 1 (m1 ¼ m2 ¼ m) we may write:

l21 ¼
�lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 4a

p
2

; l22 ¼
lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 4a

p
2

, (A.24,A.25)
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where

l ¼
a1m2 þ a2m2 � a3 � a5

a2Z2
; a ¼

a1m4 � ða3 þ a4Þm2 þ a6

a2Z4
. (A.26,A.27)

Substituting the expression of c3 in Eq. (A.8) into Eq. (8c) yields

~c1;1 þ Z ~c2;2 ¼ ða3 � a1m2 � a2Z2l
2
1ÞW 1 þ ða3 � a1m2 þ a2Z2l

2
2ÞW 2, (A.28)

assuming

~c1 ¼ C1W 1;1 þ C2W 2;1 � ZW 3;2; ~c2 ¼ C1ZW 1;2 þ C2ZW 2;2 þW 3;1, (A.29,A.30)

substituting in Eq. (A.28) gives

C1 ¼
a1m2 þ a2Z2l

2
1 � a3

a21
; C2 ¼

a1m2 � a2Z2l
2
2 � a3

a22
. (A.31,A.32)

In view of Eqs. (A.8), (A.29) and (A.30), Eqs. (8a) and (8b) may be written as

C1a23 þ
y
n1
� C1

a21
n1

� �
W 1;1 þ C2a23 þ

y
n1
� C2

a22
n1

� �
W 2;1 � ZðW 3;11 þ Z2W 3;22 þ a23W 3Þ;2 ¼ 0, (A.33)

Z C1a23 þ
y
n1
� C1

a21
n1

� �
W 1;2 þ Z C2a23 þ

y
n1
� C2

a22
n1

� �
W 2;2 þ ðW 3;11 þ Z2W 3;22 þ a23W 3Þ;1 ¼ 0, (A.34)

where

a23 ¼
k2b2

y
�

y
n1

. (A.35)

To satisfy Eqs. (A.33) and (A.34) we can write

C1 ¼
y

a21 � n1a23
; C2 ¼

y
a22 � n1a23

, (A.36,A.37)

W 3;11 þ Z2W 3;22 ¼ �a23W 3. (A.38)

Upon assuming W3 ¼ f3(X1)g3(X2), Eq. (A.38) may be separated into

f 3;11 ¼ �m
2
3f 3; g3;22 ¼ �l

2
3g3, (A.39,A.40)

where

a23 ¼ m23 � Z2l23. (A.41)

Once again it should be emphasized that, as a result of having simply supported edges at X1 ¼ 0 and 1, a
solution based on f3,11 ¼ m3

2f3 is irrelevant and (m1 ¼ m2 ¼ m3 ¼ m). Thus, there are two possible solutions for
g3(X2) as

g3ðX 2Þ ¼ ~c3 sin l3X 2 þ
~d3 cos l3X 2 or g3ðX 2Þ ¼ cn3 sinh l3X 2 þ dn

3 cosh l3X 2 (A.42,A.43)

and no loss of generality may arise due to the selection of either of the two solutions.

Appendix B. Different possible solution for Eqs. (13a–c)

In order to solve Eqs. (13a–c), the method of separation of variables may be used. Assuming
Wi ¼ fi(X1)gi(X2) (i ¼ 1,2,3) we obtain

f i;11 ¼ �m
2
i f i; gi;22 ¼ �l

2
i gi, (B.1,B.2)

where mi
2 and li

2 are separation constants. It can be easily shown that by examining the boundary conditions,
a solution to the equations fi,11 ¼ mi

2fi are not suitable for satisfying the boundary conditions when two
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opposite edges at X1 ¼ 0 and 1 are simply supported. Hence, the following solutions to Eqs. (B.1) and (B.2)
may be selected

f iðX 1Þ ¼ ~ai sinðmiX 1Þ þ
~bi cosðmiX 1Þ, (B.3)

giðX 2Þ ¼ ~ci sinðliX 2Þ þ
~di cosðliX 2Þ, (B.4)

giðX 2Þ ¼ cni sinhðliX 2Þ þ dn

i coshðliX 2Þ. (B.5)

Assuming a14m1, a24m2 and a34m3, one set of solutions may be expressed as

W 1 ¼ ½A1 sinðl1X 2Þ þ A2 cosðl1X 2Þ�sinðm1X 1Þ

þ B1 sinðl1X 2Þ þ B2 cosðl1X 2Þ½ � cosðm1X 1Þ, (B.6)

W 2 ¼ ½A3 sinðl2X 2Þ þ A4 cosðl2X 2Þ�sinðm2X 1Þ

þ ½B3 sinðl2X 2Þ þ B4 cosðl2X 2Þ�cosðm2X 1Þ, (B.7)

W 3 ¼ ½A5 sinðl3X 2Þ þ A6 cosðl3X 2Þ�cosðm3X 1Þ

þ ½B5 sinðl3X 2Þ þ B6 cosðl3X 2Þ�sinðm3X 1Þ, (B.8)

where

a21 ¼ m21 þ Z2l21; a22 ¼ m22 þ Z2l22; a23 ¼ m23 þ Z2l23. (B.92B.11)

The next three sets of solutions may be written as

W 1 ¼ ½A1 sinðl1X 2Þ þ A2 cosðl1X 2Þ�sinðm1X 1Þ

þ ½B1 sinðl1X 2Þ þ B2 cosðl1X 2Þ�cosðm1X 1Þ, (B.12)

W 2 ¼ ½A3 sinðl2X 2Þ þ A4 cosðl2X 2Þ�sinðm2X 1Þ

þ ½B3 sinðl2X 2Þ þ B4 cosðl2X 2Þ�cosðm2X 1Þ, (B.13)

W 3 ¼ ½A5 sinhðl3X 2Þ þ A6 coshðl3X 2Þ�cosðm3X 1Þ

þ ½B5 sinhðl3X 2Þ þ B6 coshðl3X 2Þ�sinðm3X 1Þ, (B.14)

where

a14m1; a24m2; a3om3, (B.152B.17)

a21 ¼ m21 þ Z2l21; a22 ¼ m22 þ Z2l22; a23 ¼ m23 � Z2l23, (B.182B.20)

W 1 ¼ ½A1 sinðl1X 2Þ þ A2 cosðl1X 2Þ�sinðm1X 1Þ

þ ½B1 sinðl1X 2Þ þ B2 cosðl1X 2Þ�cosðm1X 1Þ, (B.21)

W 2 ¼ ½A3 sinhðl2X 2Þ þ A4 coshðl2X 2Þ�sinðm2X 1Þ

þ ½B3 sinhðl2X 2Þ þ B4 coshðl2X 2Þ�cosðm2X 1Þ, (B.22)

W 3 ¼ ½A5 sinðl3X 2Þ þ A6 cosðl3X 2Þ�cosðm3X 1Þ

þ ½B5 sinðl3X 2Þ þ B6 cosðl3X 2Þ�sinðm3X 1Þ, (B.23)

where

a14m1; a2om2; a34m3, (B.242B.26)

a21 ¼ m21 þ Z2l21; a22 ¼ m22 � Z2l22; a23 ¼ m23 þ Z2l23, (B.272B.29)

and

W 1 ¼ ½A1 sinðl1X 2Þ þ A2 cosðl1X 2Þ�sinðm1X 1Þ

þ ½B1 sinðl1X 2Þ þ B2 cosðl1X 2Þ�cosðm1X 1Þ, (B.30)
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W 2 ¼ ½A3 sinhðl2X 2Þ þ A4 coshðl2X 2Þ�sinðm2X 1Þ

þ ½B3 sinhðl2X 2Þ þ B4 coshðl2X 2Þ�cosðm2X 1Þ, (B.31)

W 3 ¼ ½A5 sinhðl3X 2Þ þ A6 coshðl3X 2Þ�cosðm3X 1Þ

þ ½B5 sinhðl3X 2Þ þ B6 coshðl3X 2Þ�sinðm3X 1Þ, (B.32)

where

a14m1; a2om2; a3om3, (B.332B.35)

a21 ¼ m21 þ Z2l21; a22 ¼ m22 � Z2l22; a23 ¼ m23 � Z2l23. (B.362B.38)

To satisfy the boundary conditions when two opposite edges at X1 ¼ 0 and 1 are simply supported, we
should write:

m1 ¼ m2 ¼ m3 ¼ mp; B1 ¼ B2 ¼ B3 ¼ B4 ¼ B5 ¼ B6 ¼ 0. (B.39,B.40)

The discussion on the existence of eigenvalues such that a1om1 is presented in Ref. [38]. Anyway, it is not
difficult to show that a34a2 by rewriting Eq. (16c) as

a23
a22
¼

12k2

b2d2
a21, (B.41)

where the right-hand side of Eq. (B.41) is always greater than one. Thus, the set of solutions given by
Eqs. (B.12)–(B.14) must be eliminated to satisfy (B.15)–(B.17). Close examination of Eq. (16c) in case of b ¼ 0
(the critical buckling load parameter ~Ncr may be determined by setting b ¼ 0 in the corresponding
characteristic equation of each individual case) reveals that a3

2o0. Thus, there will exist one sets of solution,
given by Eqs. (B.30)–(B.32) which is able to satisfy the conditions (B.33)–(B.38).

Appendix C. Nondimensional transverse deflection

In order to find the nondimensional transverse deflection ( ~U3 ¼
~c3), the previously mentioned procedure

for the determination of characteristic equations for the six cases may be applied. Focusing on the arbitrary
constants Ai and presenting them in terms of A1, leads to the following expressions of the nondimensional
transverse displacement for the six different boundary conditions.

S-S-S-S case:

~U3 ¼ A1 sinðl1X 2ÞsinðmpX 1Þ. (C.1)

S-C-S-S case:

~U3 ¼ A1 sinðl1X 2Þ �
sin l1
sinh l2

sinhðl2X 2Þ

� �
sinðmpX 1Þ. (C.2)

S-C-S-C case:

~U3 ¼ A1½sinðl1X 2Þ þ b1 cosðl1X 2Þ � ðb1 cos l1 � b1 cosh l2 þ sin l1Þ
sinhðl2X 2Þ

sinh l2
� b1 coshðl2X 2Þ�sinðmpX 1Þ, (C.3)

where

b1 ¼ �
Z2l3ðC2l2 sin l1 � C1l1 sinhl2Þsinhl3 þ ðC1 � C2Þm2 sin l1 sinh l2

C2Z2l2l3ðcos l1 � coshl2Þsinhl3 þ ðC1 � C2Þm2ðcos l1 � coshl3Þsinh l2
. (C.4)

S-S-S-F case:

~U3 ¼ A1f½sinðl1X 2Þ þ b2 cosðl1X 2Þ�cosh l2 þ
L1l1
L3l2

sinh½l2ð1� X 2Þ�

� ðb2 cos l1 þ sin l1Þcoshðl2X 2Þg
sinðmpX 1Þ

cosh l2
, (C.5)
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where

b2 ¼ �
R1

R2
, (C.6)

R1 ¼ C2L2ðL3l2 sin l1 � L1l1 sinh l2Þcosh l3

þ ðC1 � C2Þl2m2ð1� nÞðL3 sin l1 þ 2Z2l1l3 sinh l3Þcosh l2, (C.7)

R2 ¼ L3l2fC2L2 cos l1 cosh l3 þ ½ðC1 � C2Þm2ð1� nÞcos l1 þ C1L4 cosh l3�cosh l2g. (C.8)

S-F-S-F case:

~U3 ¼ A1½sinðl1X 2Þ þ b3 cosðl1X 2Þ �
L1l1
L3l2

sinhðl2X 2Þ þ b4 coshðl2X 2Þ�sinðmpX 1Þ, (C.9)

where

b3 ¼ �
R3

R4
; b4 ¼

R5

R6
, (C.10)

R3 ¼ 2ðC1 � C2ÞZ2m2l1l2l3ð1� nÞðcos l1 � cosh l3Þsinh l2
� C2L1L2l1ðcos l1 � cosh l2Þsinh l3, (C.11)

R4 ¼ C2L1L2l1 sin l1 sinh l3

� l2½2ðC1 � C2ÞZ2m2l1l3ð1� nÞsin l1 þ C1L3L4 sinh l3�sinh l2, (C.12)

R5 ¼ Z2l1l3ð1� nÞ½ðC2 � 1ÞL1ðcosh l2 � cosh l3Þ

þ ðC1 � 1ÞL3ðb3 sin l1 � cos l1 þ cosh l3Þ� � b3C1L3L4 sinh l3, (C.13)

R6 ¼ L3½ðC2 � 1ÞZ2l2l3ð1� nÞsinh l2 � C2L2 sinh l3�. (C.14)

S-C-S-F case:

~U3 ¼ A1f½sinðl1X 2Þ þ b5 cosðl1X 2Þ� cosh l2 þ
L1l1
L3l2

sinh½l2ð1� X 2Þ�

� ðb5 cos l1 þ sin l1Þcoshðl2X 2Þg
sinðmpX 1Þ

cosh l2
, (C.15)

where

b5 ¼ �
R7

R8
, (C.16)

R7 ¼ C2L2ðL3l2 sin l1 � L1l1 sinh l2Þcosh l3

þ ðC1 � C2Þm2l2ð1� nÞðL3 sin l1 þ 2Z2l1l3 sinh l3Þcosh l2, (C.17)

R8 ¼ L3l2½ðC1 � C2Þm2ð1� nÞcos l1 cosh l2
þ ðC2L2 cos l1 þ C1L4 cosh l2Þcosh l3�. (C.18)
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